ชื่อเรื่อง การศึกษาประสิทธิภาพของจุลินทรีย์ที่สามารถผลิตเอนไซม์

ไลเปสในการกำจัดไขมันและน้ำมันที่ปนเปื้อนในน้ำเสียของ

โรงงานปลาส้ม

ชื่อผู้เขียน นายสุวัฒน์ศักดิ์ ค่านศักดิ์ดา

ชื่อปริญญา วิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ

ประธานกรรมการที่ปรึกษา ผู้ช่วยศาสตราจารย์ คร.ฐปน ชื่นบาล

บทคัดย่อ

งานวิจัยนี้มีจุดประสงค์เพื่อศึกษาการกำจัด ใขมันและน้ำมันที่ปนเปื้อนในน้ำเสียจาก กระบวนการผลิตปลาส้มค้วยจุลินทรีย์ที่สามารถผลิตเอน ใชม์ใลเปส โดยคัดแยกจุลินทรีย์จาก ตัวอย่างคินและน้ำ จำนวน 30 ตัวอย่าง ด้วยเทคนิค enrichment culture ได้จำนวน 447 ใอโซเลท จากนั้นคัดเลือกจุลินทรีย์ที่สามารถผลิตเอน ใชม์ใลเปสเบื้องต้น โดยทดสอบการเกิดบริเวณใสบน อาหารแข็งสูตร Tween 80 จากการทดลอง พบว่า มีจุลินทรีย์จำนวน 91 ใอโซเลท เกิดบริเวณใสและ ตะกอนสีขาวขุ่นรอบโคโลนี จุลินทรีย์ที่มีขนาดของบริเวณใสรอบโคโลนีตั้งแต่ 12 มิลลิเมตร ซึ่ง คาดว่าจะมีความสามารถในการผลิตเอน ใชม์ใลเปส ได้ดี จำนวน 21 ใอโซเลท ถูกนำมาศึกษา เปรียบเทียบประสิทธิภาพในการย่อยสลาย ใชมันและน้ำมันในน้ำเสียสังเคราะห์ในระดับ ห้องปฏิบัติการ พบว่า จุลินทรีย์ใอโซเลท SI3 – 8, NI2 – 1 และ NI0 – 9 มีประสิทธิภาพในการย่อย สลายใชมันและน้ำมันได้ดีที่สุด จากนั้นทำการตรวจสอบค่ากิจกรรมจำเพาะ (specific activity) ของ เอน ใชม์ใลเปส พบว่า ใอโซเลท NI0 – 9 มีค่ากิจกรรมจำเพาะของเอน ใชม์ใลเปส สูงสุด เท่ากับ 295.2 ยูนิตต่อมิลลิกรัม ในชั่วโมงที่ 24 ในขณะที่ ใอโซเลท NI2 – 1 มีค่ากิจกรรมจำเพาะของ เอน ใชม์ใลเปสสูงสุด เท่ากับ 251.9 ยูนิตต่อมิลลิกรัม ในชั่วโมงที่ 18 และ SI3 – 8 เท่ากับ 220.1 ยูนิต ต่อมิลลิกรัม ในชั่วโมงที่ 24

จากการศึกษาสภาวะที่เหมาะสมในการย่อยสลายสลายใจมันและน้ำมันโดยใช้ เชื้อจุลินทรีย์ผสมทั้ง 3 ใอโซเลท พบว่า สภาวะที่เหมาะสมในการย่อยสลายใจมันและน้ำมันในน้ำ เสีย คือ น้ำเสียมีปริมาณใจมันและน้ำมันเป็นองค์ประกอบ ร้อยละ 20 ของน้ำเสียทั้งหมด มีการ ปรับค่าพีเอชให้เท่ากับ 9.0 โดยเติมเชื้อจุลินทรีย์ผสมทั้ง 3 ใอโซเลท ร้อยละ 1 ของน้ำเสียทั้งหมด และมีความเร็วรอบในการกวนผสม เท่ากับ 200 รอบต่อนาที จากนั้นทำการสร้างระบบแยกและย่อย ใจมันเพื่อนำไปใช้ร่วมกับระบบบำบัดน้ำเสียของโรงงานปลาส้ม ซึ่งประกอบด้วย 2 ส่วน คือ ส่วน

ถึงแยก ทำหน้าที่แยกส่วนของน้ำ ไขมันและน้ำมันรวมทั้งของแข็งออกจากกัน และ ส่วนของถึงย่อย ไขมัน ทำหน้าที่ย่อยไขมันและน้ำมันโดยจุลินทรีย์ที่ผลิตเอนไซม์ไลเปส

เมื่อทำการศึกษาประสิทธิภาพของถังแยกใขมันของระบบแยกและย่อยใขมัน โดยใช้น้ำเสีย จากโรงงานปลาส้มศรีทน ตำบลบ้านสาง อำเภอเมือง จังหวัดพะเยา จำนวน 150 ลิตร ซึ่งมีปริมาณ ใขมันและน้ำมัน เท่ากับ 160.40 กรัมต่อลิตร พบว่า ถังแยกมีประสิทธิภาพในการกำจัดใขมันและ น้ำมัน เท่ากับ ร้อยละ 99.57 โดยน้ำเสียที่ออกจากถังแยกมีปริมาณ ใขมันและน้ำมันเท่ากับ 0.69 กรัม ต่อลิตร และจากการศึกษาประสิทธิภาพของถังย่อยใขมันของระบบแยกและย่อยใขมัน โดยใช้น้ำเสีย เป็นเวลานาน 13 วัน พบว่า ถังย่อยใขมันมีประสิทธิภาพในการกำจัดใขมันและน้ำมัน เท่ากับ ร้อยละ 96.82 และมีประสิทธิภาพในการกำจัดซีโอดี เท่ากับ ร้อยละ 70.83

จากนั้นทำการจำแนกเชื้อจุลินทรีย์ที่สามารถย่อยสลายใจมันและน้ำมันในน้ำเสียทั้ง 3 ใอโซเลท ด้วยเทคนิคการหาลำดับเบสของยืน 16S rRNA พบว่า ใอโซเลท N10 – 9 คือ Pseudomonas stutzeri ส่วนใอโซเลท N12 – 1 คือ Acinetobacter baumannii และใอโซเลท S13 – 8 คือ Bacillus cereus จากผลการทดลองที่ได้สามารถนำไปประยุกต์ใช้ในการบำบัดน้ำเสียที่มีใจมันและน้ำมันปนเปื้อน จากอุตสาหกรรมอื่น ๆ ต่อไป

Title A study on efficiency of lipase – producing microorganisms

for removal fat and oil contaminated in fish fermented

plant wastewater

Author Mr. Suwatsak Dansakda

Degree of Master of Science in Biotechnology

Advisory Committee Chairperson Assistant Professor Dr. Tapana Cheunbarn

ABSTRACT

The aim of this study was to investigate the fat and oil degradation from wastewater in the fermented fish process. The lipase – producing microorganisms was isolated from fermented fish process from thirty soil and water samples using enrichment culture technique. It was found that four hundred and forty - seven isolates were able to grow on olive oil agar. Then, the primary screening of lipase – producing microorganisms by colonies on Tween 80 agar was detected. The result was that only ninety – one isolates showed clear zone around colony. After that, twenty – one isolates that produced more than 12 millimeters in diameter of clear zone were selected for study on efficiency of fat and oil degradation in synthetic wastewater. The finding was that three isolates: N10 -9, N12 – 1 and S13 – 8 had highest fat and oil degradation efficiency (78.97%, 72.24% and 72.12%, respectively). For lipase specific activity determination, N10 -9, N12 – 1 and S13 – 8 had 295.2, 251.9 and 220.1 unit/mg of lipase specific activity at 24, 18 and 24 h of cultivation, respectively.

The suitable condition for fat and oil degradation of consortium was further studied. The finding was that fat and oil contained wastewater was 20 percents of fat and oil, the pH level was conducted at 9. Then, I percent of the consortium was added and mixed with 200 rpm mixing rate. From the suitable condition, the fat and oil separation and degradation system was designed. The system consisted of 2 parts, separating tank that separated fat and oil phase from solid and water phase, and degrading tank that fat and oil were degraded using lipase - producing consortium.

The application of the fat and oil separation and degradation system for wastewater treatment was studied at Sri – ton Fish Fermented Factory (Tambon Bansang, Muang District, Phayao) for 13 days, using 150 liters of wastewater which contained 160.40 g/L fat and oil. For separating tank, it was found that removal efficiency of this tank was 99.6 percents, the effluent contained 0.69 g/L fat and oil. For degrading tank, the result showed that fat and COD removal was 96.8 and 70.8 percents, respectively.

Then, identification of three fat and oil degrading microorganism using 16S rRNA sequencing technique was studied. It was found that N10 – 9, N12 – 1 and S13 – 8 isolate was *Pseudomonas stutzeri*, *Acinetobacter baumannii* and *Bacillus cereus*, respectively. Therefore, this system can be applied to treat other fat and oil contaminated wastewater.